ADVERTISEMENT
Using Artificial Intelligence to Model Wound Healing Prediction: A Preliminary Study
Introduction. Accurate wound healing prediction can help guide treatment decisions by early identification of patients presenting with nonhealing risk. Prior efforts include the development of Wound Healing Index for diabetic foot ulcers. Such prediction and risk stratification systems demonstrate some efficacy, but they exclude vital wound image information and associated visual details.
Objective. Using a data set from a chronic wound data repository, the authors apply the latest developments in deep learning to develop a healing prediction model integrating wound images.
Methods. The proposed deep learning framework combines wound images and patient demographic data to develop a healing prediction model utilizing a Long Short-Term Memory (LSTM) network. An open-source Python deep learning library was employed to develop the machine-learning framework. The model, a combination of Deep Convolutional Network and Deep Neural Network, was trained using the Adam optimizer and categorical cross entropy as the loss function. The model output is the predicted healing trajectory.
Results. The authors tested the proposed model on an input data source comprised of 4 weeks of longitudinal data from the chronic wound data repository. The predicted and actual healing trajectories are compared by way of the Pompeiu-Hausdorff (P-H) distance, which is a measure of trajectory similarity (where zero would denote 2 identical trajectories). The model tested here achieves a P-H distance of 1.6 cm2.
Conclusions. The proposed novel LSTM network enables the use of wound image and patient demographic data to perform robust sequence learning. This early application of artificial intelligence may enable more robust healing prediction, thereby facilitating better risk stratification and, subsequently, treatment decisions. Future work will focus on improving the robustness and generalizability of the hybrid LSTM cell with more images and data augmentation.
Citation: Guler O, Cheng P, Wilson E, Wu KL. Using artificial intelligence to model wound healing prediction: a preliminary study. Poster presented at: Symposium on Advanced Wound Care Spring; May 7-11, 2019; San Antonio, TX.
Products: Deep learning model, including Long Short-Term Memory (LSTM) network
Sponsor: N/A
This abstract was not subject to the WOUNDS® peer-review process.
Interested in seeing more posters exhibited at SAWC Spring 2019? Register for the conference and attend the Poster Gala on Thursday, May 9!