1. Whinfield AL, Aitkenhead I. The light revival: does phototherapy promote wound healing? A review. Foot (Edinb). 2009;19(2):117–124. doi:10.1016/j.foot.2009.01.004
2. Caetano KS, Frade MA, Minatel DG, Santana LA, Enwemeka CS. Phototherapy improves healing of chronic venous ulcers. Photomed Laser Surg. 2009;27(1):111–118. doi:10.1089/pho.2008.2398
3. Minatel DG, Frade MA, França SC, Enwemeka CS. Phototherapy promotes healing of chronic diabetic leg ulcers that failed to respond to other therapies. Lasers Surg Med. 2009;41(6):433–441. doi:10.1002/lsm.20789
4. Bayat M, Delbari A, Almaseyeh MA, Sadeghi Y, Bayat M, Reziae F. Low-level laser therapy improves early healing of medial collateral ligament injuries in rats. Photomed Laser Surg. 2005;23(6):556–560. doi:10.1089/pho.2005.23.556
5. Reddy GK, Stehno-Bittel L, Enwemeka CS. Laser photostimulation of collagen production in healing rabbit Achilles tendons. Lasers Surg Med. 1998;22(5):281–287. doi:10.1002/(sici)1096-9101(1998)22:5<281::aid-lsm4>3.0.co;2-l
6. Nouruzian M, Alidoust M, Bayat M, Bayat M, Akbari M. Effect of low-level laser therapy on healing of tenotomized Achilles tendon in streptozotocin-induced diabetic rats. Lasers Med Sci. 2013;28(2):399–405. doi:10.1007/s10103-012-1074-7
7. Morrone G, Guzzardella GA, Torricelli P, et al. Osteochondral lesion repair of the knee in the rabbit after low-power diode Ga-Al-As laser biostimulation: an experimental study. Artif Cells Blood Substit Immobil Biotechnol. 2000;28(4):321–336. doi:10.3109/10731190009119362
8. Guzzardella GA, Tigani D, Torricelli P, et al. Low-power diode laser stimulation of surgical osteochondral defects: results after 24 weeks. Artif Cells Blood Substit Immobil Biotechnol. 2001;29(3):235–244. doi:10.1081/bio-100103047
9. Torricelli P, Giavaresi G, Fini M, et al. Laser biostimulation of cartilage: in vitro evaluation. Biomed Pharmacother. 2001;55(2):117–120. doi:10.1016/s0753-3322(00)00025-1
10. Shnitkind E, Yaping E, Geen S, Shalita AR, Lee WL. Anti-inflammatory properties of narrow-band blue light. J Drugs Dermatol. 2006;5(7):605–610.
11. Kleinpenning MM, Smits T, Frunt MH, van Erp PE, van de Kerkhof PC, Gerritsen RM. Clinical and histological effects of blue light on normal skin. Photodermatol Photoimmunol Photomed. 2010;26(1):16–21. doi:10.1111/j.1600-0781.2009.00474.x
12. Krutmann J, Medve-Koenigs K, Ruzicka T, Ranft U, Wilkens JH. Ultraviolet-free phototherapy. Photodermatol Photoimmunol Photomed. 2005;21(2):59–61. doi:10.1111/j.1600-0781.2005.00141.x
13. Dungel P, Hartinger J, Chaudary S, et al. Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing. Lasers Surg Med. 2014 Dec;46(10):773–780. doi:10.1002/lsm.22299
14. Wang Y, Wang Y, Wang Y, et al. Antimicrobial blue light inactivation of pathogenic microbes: state of the art. Drug Resist Updat. 2017;33-35:1–22. doi:10.1016/j.drup.2017.10.002
15. Dai T, Gupta A, Huang YY, et al. Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob Agents Chemother. 2013;57(3):1238–1245. doi:10.1128/AAC.01652-12
16. Guffey JS, Wilborn J. Effects of combined 405-nm and 880-nm light on Staphylococcus aureus and Pseudomonas aeruginosa in vitro. Photomed Laser Surg. 2006;24(6):680–683. doi:10.1089/pho.2006.24.680
17. Kawada A, Aragane Y, Kameyama H, Sangen Y, Tezuka T. Acne phototherapy with a high-intensity, enhanced, narrow-band, blue light source: an open study and in vitro investigation. J Dermatol Sci. 2002;30(2):129–135. doi:10.1016/s0923-1811(02)00068-3
18. Bumah VV, Masson-Meyers DS, Enwemeka CS. Blue 470 nm light suppresses the growth of Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med. 2015;47(7):595–601. doi:10.1002/lsm.22385
19. Dai T, Tegos GP, Zhiyentayev T, Mylonakis E, Hamblin MR. Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg Med. 2010;42(1):38–44. doi:10.1002/lsm.20887
20. Enwemeka CS, Williams D, Hollosi S, Yens D, Enwemeka SK. Visible 405 nm SLD light photo-destroys methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med. 2008;40(10):734–737. doi:10.1002/lsm.20724
21. Enwemeka, Enwemeka CS, Williams D, Enwemeka SK, Hollosi S, Yens D. Blue 470-nm light kills methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Photomed Laser Surg. 2009;27(2):221–226. doi:10.1089/pho.2008.2413
22. Bumah VV, Masson-Meyers DS, Cashin S, Enwemeka CS. Optimization of the antimicrobial effect of blue light on methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med. 2015;47(3):266–272. doi:10.1002/lsm.22327
23. Kromer C, Nühnen VP, Pfützner W, et al. Treatment of atopic dermatitis using a full-body blue light device (AD-Blue): protocol of a randomized controlled trial. JMIR Res Protoc. 2019;8(1):e11911. doi:10.2196/11911
24. Liebmann J, Born M, Kolb-Bachofen V. Blue-light irradiation regulates proliferation and differentiation in human skin cells. J Invest Dermatol. 2010;130(1):259–269. doi:10.1038/jid.2009.194
25. Becker D, Langer E, Seemann M, et al. Clinical efficacy of blue light full body irradiation as treatment option for severe atopic dermatitis. PLoS One. 2011;6(6):e20566. doi:10.1371/journal.pone.0020566
26. Rossi F, Cicchi R, Tatini F, et al. Healing process study in murine skin superficial wounds treated with the blue LED photocoagulator “EMOLED.” Medical Laser Applications and Laser-Tissue Interactions VII. 2015. Munich: Optical Society of America. doi:10.1117/12.2183670
27. Cicchi R, Rossi F, Tatini F, et al. Irradiation with EMOLED improves the healing process in superficial skin wounds. Photonic Therapeutics and Diagnostics X. 2014; 892604. doi:10.1117/12.2037014
28. EmoLED. EmoLED. Accessed January 4, 2020. https://emoled.com/en/prodotto/
29. Rossi F, Cicchi, Magni G, et al. In-vivo wound healing modulation after irradiation with a blue LED photocoagulator. Medical Laser Applications and Laser-Tissue Interactions VIII. 2017;104706. Munich: Optical Society of America. doi:10.1117/12.2286053
30. Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2(2):329–333. doi:10.1038/nprot.2007.30
31. Gebäck T, Schulz MM, Koumoutsakos P, Detmar M. TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques. 2009;46(4):265–274. doi:10.2144/000113083
32. Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82(13):1107–1112. doi:10.1093/jnci/82.13.1107
33. Kisielewska J, Lu P, Whitaker M. GFP-PCNA as an S-phase marker in embryos during the first and subsequent cell cycles. Biol Cell. 2005;97(3):221–229. doi:10.1042/BC20040093
34. Crowley LC, Marfell BJ, Waterhouse NJ. Analyzing cell death by nuclear staining with Hoechst 33342. Cold Spring Harb Protoc. 2016;2016(9). doi:10.1101/pdb.prot087205
35. Masson-Meyers DS, Bumah VV, Enwemeka CS. Blue light does not impair wound healing in vitro. J Photochem Photobiol B. 2016;160:53–60. doi:10.1016/j.jphotobiol.2016.04.007
36. Gröne A. Keratinocytes and cytokines. Vet Immunol Immunopathol. 2002;88(1-2):1–12. doi:10.1016/s0165-2427(02)00136-8
37. Mamalis A, Garcha M, Jagdeo J. Light emitting diode-generated blue light modulates fibrosis characteristics: fibroblast proliferation, migration speed, and reactive oxygen species generation. Lasers Surg Med. 2015;47(2):210–215. doi:10.1002/lsm.22293
38. Avola R, Graziano ACE, Pannuzzo G, Bonina F, Cardile V. Hydroxytyrosol from olive fruits prevents blue-light-induced damage in human keratinocytes and fibroblasts. J Cell Physiol. 2019;234(6):9065–9076. doi:10.1002/jcp.27584
39. Godley BF, Shamsi FA, Liang FQ, Jarrett SG, Davies S, Boulton M. Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem. 2005;280(22):21061–21066. doi:10.1074/jbc.M502194200
40. Boehm EM, Gildenberg MS, Washington MT. The many roles of PCNA in eukaryotic DNA replication. Enzymes. 2016;39:231–254. doi:10.1016/bs.enz.2016.03.003
41. Teuschl A, Balmayor ER, Redl H, van Griensven M, Dungel P. Phototherapy with LED light modulates healing processes in an in vitro scratch-wound model using 3 different cell types. Dermatol Surg. 2015;41(2):261–268. doi:10.1097/DSS.0000000000000266
42. Adamskaya N, Dungel P, Mittermayr R, et al. Light therapy by blue LED improves wound healing in an excision model in rats. Injury. 2011;42(9):917–921. doi:10.1016/j.injury.2010.03.023
43. Castellano-Pellicena I, Uzunbajakava NE, Mignon C, Raafs B, Botchkarev VA, Thornton MJ. Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing? Lasers Surg Med. 2019;51(4):370–382. doi:10.1002/lsm.23015
44. Cicchi R, Rossi F, Alfieri D, et al. Observation of an improved healing process in superficial skin wounds after irradiation with a blue-LED haemostatic device. J Biophotonics. 2016;9(6):645–655. doi:10.1002/jbio.201500191
45. Bashir MM, Sharma MR, Werth VP. TNF-alpha production in the skin. Arch Dermatol Res. 2009;301(1):87–91. doi:10.1007/s00403-008-0893-7