Skip to main content

Advertisement

ADVERTISEMENT

Peer Review

Peer Reviewed

Review

All Edema Is Lymphedema: Progressing Lymphedema and Wound Management to an Integrated Model of Care

January 2022
Wound Manag Prev. 2022;68(1):8–15

1. Danielli JF. Capillary permeability and oedema in the perfused frog. J Physiol. 1940;98(1):109–129. doi:10.1113/jphysiol.1940.sp003837

2. Luft JH. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc. 1966;(25)6:1773–1783.

3. Reitsma S, Slaaf D, Vink H, van Zandvoort M, oude Egbrink MGA. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Archiv. 2007;454(3):345–359. doi:10.1007/s00424-007-0212-8

4. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007;9:121–167. doi:10.1146/annurev.bioeng.9.060906.151959

5. Biddle C. Like a slippery fish, a little slime is a good thing: the glycocalyx revealed. AANA J. 2013;81(6):473–480.

6. Weinbaum S, Cancel LM, Fu BM, Tarbell JM. The glycocalyx and its role in vascular physiology and vascular related diseases. Cardiovasc Eng Technol. 2020;12:37–71. doi:10.1007/s13239-020-00485-9

7. Möckl L. The emerging role of the mammalian glycocalyx in functional membrane organization and immune system regulation. Front Cell Dev Biol. 2020;8:253. doi:10.3389/fcell.2020.00253

8. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384–394. doi:10.1093/bja/aer515

9. Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19(4):312–326. doi:10.1113/jphysiol.1896.sp000596

10. Michel CC. Starling: the formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years. Exp Physiol. 1997;82(1):1–30. doi:10.1113/expphysiol.1997.sp004000

11. Weinbaum S. 1997 Whitaker distinguished lecture: models to solve mysteries in biomechanics at the cellular level; a new view of fiber matrix layers. Ann Biomed Eng. 1998;26(4):627–643. doi:10.1114/1.134

12. Mortimer PS, Rockson SG. New developments in clinical aspects of lymphatic disease. J Clin Invest. 2014;124(3):915–921. doi:10.1172/JCI71608

13. Potje SR, Dal-Cin Paula T, Paulo M, Bendhack LM. The role of glycocalyx and caveolae in vascular homeostasis and diseases. Front Physiol. 2021;11:620840. doi:10.3389/fphys.2020.620840

14. Becker BF, Jacob M, Liepert S, Salmon AHJ, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol. 2015;80(3):389–402. doi:10.1111/bcp.12629

15. Aldecoa C, Llau JV, Novels X, Artigas A. Role of albumin in the preservation of endothelial glycocalyx integrity and the microcirculation: a review. Ann Intensive Care. 2020;10(1):85. doi:10.1186/s13613-020-00697-1

16. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87(2):198–210. doi:10.1093/cvr/cvq062

17. Bjork R, Hettrick H. Endothelial glycocalyx layer and interdependence of lymphatic and integumentary systems. Wounds Int. 2018;(9)2:50–54.

18. Bjork R, Ehmann S. S.T.R.I.D.E. professional guide to compression garment selection for the lower extremity. J Wound Care. 2019;28(suppl 6a):1–44. doi:10.12968/jowc.2019.28.Sup6a.S1

19. Földi M, Földi E, Strößenreuther R, Kubik S, eds. Földi's Textbook of Lymphology: For Physicians and Lymphedema Therapists. Elsevier Health Sciences; 2012.

20. Hansen KC, Alessandro A, Clement CC, Santambrogio L. Lymph formation, composition and circulation: a proteomics perspective. Int Immunol. 2015;27(5):219–227. doi:10.1093/intimm/dxv012

21. Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic vessel network structure and physiology. Compr Physiol. 2019;9(1):207–299. doi:10.1002/cphy.c180015

22. Wiig H, Keskin D, Kalluri R. Interaction between the extracellular matrix and lymphatics: consequences for lymphangiogenesis and lymphatic function. Matrix Biol. 2010;29(8):645–656. doi:10.1016/j.matbio.2010.08.001

23. Gerli R, Alessandrini C. Initial lymph vessels of the skin and elastic fibers form an integral morphofunctional structure. Ital J Anat Embryol. 1995;100(suppl 1);579–587.

24. Bruckner-Tuderman L, Höpfner B, Hammami-Hauasli N. Biology of anchoring fibrils: lessons from dystrophic epidermolysis bullosa. Matrix Biol. 1999;18(1):43–54. doi:10.1016/s0945-053x(98)00007-9

25. Leak LV, Burke JF. Ultrastructural studies on the lymphatic anchoring filaments. J Cell Biol. 1968;36(1):129–149.

26. Swartz MA, Skohe M. Lymphatic function, lymphangiogenesis, and cancer metastasis. Microsc Res Tech. 2001;55(2):92–99. doi:10.1002/jemt.1160

27. Weber E, Rossi A, Solito R, Sacchi G, Angliano M, Gerli R. Focal adhesion molecules expression and fibrillin deposition by lymphatic and blood vessel endothelial cell in culture. Microvasc Res. 2002;64(1):47–55. doi:10.1006/mvre.2002.2397

28. Wiegand C, White R. Microdeformation in wound healing. Wound Repair Regen. 2013;21(6):793–799. doi:10.1111/wrr.12111

29. Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation. 2016;23(2):95–121. doi:10.1111/micc.12259

30. Jamalian S, Jafarnejad M, Zawieja S, et al. Demonstration and analysis of the suction effect for pumping lymph from tissue beds at subatmospheric pressure. Sci Rep. 2017;7(1):12080. doi:10.1038/s41598-017-11599-x

31. Moore JE, Bertram CD. Lymphatic system flows. Annu Rev Fluid Mech. 2018;50:459–482. doi:10.1146/annurev-fluid-122316-045259

32. Rutkowski JM, Boardman KC, Swartz MA. Characterization of lymphangiogenesis in a model of adult skin regeneration. Am J Physiol Heart Circ Physiol. 2006;291(3):H1402–1410. doi:10.1152/ajpheart.00038.2006

33. Boardman KC, Swartz MA. Interstitial flow as a guide for lymphangiogenesis. Circ Res. 2003;92(7):801–808. doi:10.1161/01.RES.0000065621.69843.49

34. Rasmussen JC, Aldrich MB, Tan I-C, et al. Lymphatic transport in patients with chronic venous insufficiency and venous leg ulcers following sequential pneumatic compression. J Vasc Surg Venous Lymphat Disord. 2016;4(1):9–17. doi:10.1016/j.jvsv.2015.06.001

35. Wandolo G, Elias RM, Ranadive NS, Johnston MG. Heme-containing proteins suppress lymphatic pumping. J Vasc Res. 1992;29(3):248–255. doi:10.1159/000158939

36. Rasmussen JC, Zhu B, Morrow JR, et al. Degradation of lymphatic anatomy and function in early venous insufficiency. J Vasc Surg Venous Lymphat Disord. 2021;9(3):720–730. doi:10.1016/j.jvsv.2020.09.007

37. Scelsi R, Scelsi L, Cortinovis R, Poggi P. Morphological changes of dermal blood and lymphatic vessels in chronic venous insufficiency of the leg. Int Angiol. 1994;13(4):308–311.

38. Carlson JA. Lymphedema and subclinical lymphostasis (microlymphedema) facilitate cutaneous infection, inflammatory dermatoses, and neoplasia: a locus minoris resistentiae. Clin Dermatol. 2014;32(5):599–615.

39. Moffatt C, Keeley V, Quere I. The concept of chronic edema—a neglected public health issue and an international response: the LIMPRINT study. Lymphat Res Biol. 2019;17(2):121–126. doi:10.1089/lrb.2018.0085

40. Bjork R, Hettrick H. Lymphedema: new concepts in diagnosis and treatment. Curr Derm Rep. 2019;8:190–198.

41. World Health Organization. Lymphoedema and the chronic wound: the role of compression and other interventions. In: Macdonald JM, Geyer MJ, eds. Wound and Lymphoedema Management. WHO: 2010:63–84.

42. Framework L. Best Practice for the Management of Lymphoedema. International Consensus. London: 2006:3–52.

43. Executive Committee. The diagnosis and treatment of peripheral lymphoedema: 2016 consensus document of the International Society of Lymphology. Lymphology. 2016;49(4):170–184.

44. Cheville AL, Andrews K, Kollasch J, Schmidt K, Basford J. Adapting lymphedema treatment to the palliative setting. Am J Hosp Palliat Care. 2014;31(1):38–44. doi:10.1177/1049909112475297

45. Ebert J, Joss B, Jardine B, Wood D. Randomized trial investigating the efficacy of manual lymphatic drainage to improve early outcome after total knee arthroplasty. Arch Phys Med Rehabil. 2013;94(11):2103–2111. doi:10.1016/j.apmr.2013.06.009

46. Pichonnaz C, Bassin J-P, Lécureux E, et al. Effect of manual lymphatic drainage after total knee arthroplasty: a randomized controlled trial. Arch Phys Med Rehabil. 2016;97(5):674–682. doi:10.1016/j.apmr.2016.01.006

47. Zhang H, Yan J, Lin S, et al. Manual lymphatic drainage therapy in the knee joint functional rehabilitation after TKA in diabetic knee osteoarthritis patients: a randomized clinical trial. J Surg. 2019;7(3):50–56.

48. Majewski-Schrage T, Snyder K. The effectiveness of manual lymphatic drainage in patients with orthopedic injuries. J Sport Rehabil. 2016;25(1):91–97. doi:10.1123/jsr.2014-0222

49. dos Santos Crisóstomo R, Candeias M, Ribeiro A, da Luz Belo Martins C, Armada-da-Silva P. Manual lymphatic drainage in chronic venous disease: a duplex ultrasound study. Phlebology. 2014;29(10):667–676. doi:10.1177/0268355513502787

50. dos Santos Crisóstomo RS, Costa DSA, de Luz Belo Martins C, Fernandes IR, Armada-da-Silva PA. Influence of manual lymphatic drainage on health-related quality of life and symptoms of chronic venous insufficiency: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(2):283–291. doi:10.1016/j.apmr.2014.09.020

51. Molski P, Ossowski R, Hagner W, Molski S. Patients with venous disease benefit from manual lymphatic drainage. Int Angiol. 2009;28(2):151–155.

52. Molski P, Kruczyński J, Molski A, Molski S. Manual lymphatic drainage improves the quality of life in patients with chronic venous disease: a randomized controlled trial. Arch Med Sci. 2013;9(3):452–458. doi:10.5114/aoms.2013.35343

53. Szolnoky G, Tuczai M, Macdonald JM, et al. Adjunctive role of manual lymph drainage in the healing of venous ulcers: a comparative pilot study. Lymphology. 2018;51(4):148–159.

54. Samuel V, Premkumar P, Selvaraj D, Kota AA, John JM, Stephen E. Manual lymphatic drainage in chronic venous disease: a forgotten weapon in our armory. Indian J Vasc Endovasc Surg. 2018;5(4):266–269. doi:10.4103/ijves.ijves_58_18

55. Sun B-L, Wang L-H, Yang T, et al. Lymphatic drainage system of the brain: a novel target for intervention of neurological diseases. Progr Neurobiol. 2018;163-164:118–143. doi:10.1016/j.pneurobio.2017.08.007

56. Schwartz N, Chalasani MLS, Li TM, Feng Z, Shipman W, Lu TT. Lymphatic function in autoimmune diseases. Front Immunol. 2019;10:519. doi:10.3389/fimmu.2019.00519

57. Antonucci N, Pacini S, Ruggiero M. Manual lymphatic drainage in autism treatment. Madridge J Immunol. 2018;3(1):69–72. doi:10.18689/mjim-1000116

58. Antonucci N, Pacini S, Ruggiero M. Clinical experience of integrative autism treatment with manual lymphatic drainage. EC Neurology. 2019;11:21–28.

59. Ha K-J, Lee S-Y, Lee H, Choi S-J. Synergistic effects of proprioceptive neuromuscular facilitation and manual lymphatic drainage in patients with mastectomy-related lymphedema. Front Physiol. 2017;8:959. doi:10.3389/fphys.2017.00959

60. Hettrick H, Aviles F. Tearing down the silos of lymphedema care in the wound clinic. Today’s Wound Clinic. 2017;11(10):18–23.

61. Crisóstomo RSS, Candeias MS, Armada-da-Silva PAS. Venous flow during manual lymphatic drainage applied to different regions of the lower extremity in people with and without chronic venous insufficiency: a cross-sectional study. Physiotherapy. 2017;103(1):81–89. doi:10.1016/j.physio.2015.12.005

62. Brayton KM, Hirsch AT, O’Brien PJ, Cheville A, Karaca-Mandic P, Rockson SG. Lymphedema prevalence and treatment benefits in cancer: impact of a therapeutic intervention on health outcomes and costs. PLoS ONE.  2014;9(12): e114597. doi:10.1371/journal.pone.0114597

63. Stout NL, Weiss R, Feldman JL, et al. A systematic review of care delivery models and economic analyses in lymphedema: health policy impact (2004-2011). Lymphology. 2013;46:27–41.

Advertisement

Advertisement

Advertisement